首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28184篇
  免费   2189篇
  国内免费   1260篇
化学   26754篇
晶体学   81篇
力学   823篇
综合类   145篇
数学   463篇
物理学   3367篇
  2024年   14篇
  2023年   273篇
  2022年   427篇
  2021年   484篇
  2020年   682篇
  2019年   645篇
  2018年   658篇
  2017年   908篇
  2016年   1044篇
  2015年   1015篇
  2014年   947篇
  2013年   1340篇
  2012年   1793篇
  2011年   1571篇
  2010年   1321篇
  2009年   1532篇
  2008年   1169篇
  2007年   1454篇
  2006年   1307篇
  2005年   1235篇
  2004年   1139篇
  2003年   896篇
  2002年   781篇
  2001年   604篇
  2000年   651篇
  1999年   588篇
  1998年   517篇
  1997年   634篇
  1996年   471篇
  1995年   599篇
  1994年   500篇
  1993年   431篇
  1992年   329篇
  1991年   379篇
  1990年   338篇
  1989年   306篇
  1988年   407篇
  1987年   386篇
  1986年   297篇
  1985年   280篇
  1984年   293篇
  1983年   154篇
  1982年   250篇
  1981年   198篇
  1980年   166篇
  1979年   151篇
  1978年   28篇
  1977年   6篇
  1976年   6篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Polymeric membrane-based gas separation technology has significant advantages compared with traditional amine-based CO2 separation method. In this work, SEBS block copolymer is used as a polymer matrix to incorporate triethylene oxide (TEO) functionality. The short ethylene oxide segment is chosen to avoid crystallization, which is confirmed by differential scanning calorimetry and wide-angle X-ray scattering characterizations. The gas permeability results reveal that CO2/N2 selectivity increased with increasing content of TEO functional group. The highest CO2 permeability (281 Barrer) and CO2/N2 selectivity (31) were obtained for the membrane with the highest TEO incorporation (57 mol%). Increasing the TEO content in these copolymers results in an increase in CO2 solubility and a decrease in C2H6 solubility. For example, as the grafted TEO content increased from 0 to 57 mol%, the CO2 solubility and CO2/C2H6 solubility selectivity increased from 0.72 to 1.3 cm3(STP)/cm3 atm and 0.47 to 1.3 at 35°C, respectively. The polar ether linkage in TEO-grafted SEBS copolymers exhibits favorable interaction with CO2 and unfavorable interaction with nonpolar C2H6, thus enhancing CO2/C2H6 solubility selectivity.  相似文献   
62.
Lithium ion batteries (LIBs) at present still suffer from low rate capability and poor cycle life during fast ion insertion/extraction processes. Searching for high-capacity and stable anode materials is still an ongoing challenge. Herein, a facile strategy for the synthesis of ultrathin GeS2 nanosheets with the thickness of 1.1 nm is reported. When used as anodes for LIBs, the two-dimensional (2D) structure can effectively increase the electrode/electrolyte interface area, facilitate the ion transport, and buffer the volume expansion. Benefiting from these merits, the as-synthesized GeS2 nanosheets deliver high specific capacity (1335 mAh g−1 at 0.15 A g−1), extraordinary rate performance (337 mAh g−1 at 15 A g−1) and stable cycling performance (974 mAh g−1 after 200 cycles at 0.5 A g−1). Importantly, our fabricated Li-ion full cells manifest an impressive specific capacity of 577 mAh g−1 after 50 cycles at 0.1 A g−1 and a high energy density of 361 Wh kg−1 at a power density of 346 W kg−1. Furthermore, the electrochemical reaction mechanism is investigated by the means of ex-situ high-resolution transmission electron microscopy. These results suggest that GeS2 can use to be an alternative anode material and encourage more efforts to develop other high-performance LIBs anodes.  相似文献   
63.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   
64.
The rapid development of electrochemical energy storage systems requires new electrode materials with high performance. As a two-dimensional material, molybdenum disulfide (MoS2) has attracted increasing interest in energy storage applications due to its layered structure, tunable physical and chemical properties, and high capacity. In this review, the atomic structures and properties of different phases of MoS2 are first introduced. Then, typical synthetic methods for MoS2 and MoS2-based composites are presented. Furthermore, the recent progress in the design of diverse MoS2-based micro/nanostructures for rechargeable batteries, including lithium-ion, lithium-sulfur, sodium-ion, potassium-ion, and multivalent-ion batteries, is overviewed. Additionally, the roles of advanced in situ/operando techniques and theoretical calculations in elucidating fundamental insights into the structural and electrochemical processes taking place in these materials during battery operation are illustrated. Finally, a perspective is given on how the properties of MoS2-based electrode materials are further improved and how they can find widespread application in the next-generation electrochemical energy-storage systems.  相似文献   
65.
Zeolite ZIF-8 has been etched with acid to form microporous ZIF-8-E crystals. These were then introduced into a polyethersulfone (PES) membrane matrix to enhance its CO2/N2 separation performance. Open through pores of size about 100 nm formed in the ZIF-8 crystals allow the ingrowth of polyethersulfone chains, ensuring a reduction in the number of nonselective voids, thereby achieving better interaction between ZIF-8-E and PES. As a result, the CO2/N2 separation performance of the ZIF-8-E/PES membrane increased significantly, showing a CO2 permeability of 15.7 Barrer and a CO2/N2 ideal selectivity of 6.5.  相似文献   
66.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
67.
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 μL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.  相似文献   
68.
天然气水合物作为一种储量大、无污染的清洁能源近些年受到了广泛关注. 近20年来,中国进行了较大范围的陆海域天然气水合物储层勘探与储量预测.2017年,中国地质调查局牵头对南海神狐海域的天然气水合物进行了基于降压渗流原理的试验性开采.国内外已进行的水合物试采工程面临着气体产量低、出砂较多等问题,其最主要的原因之一是开发过程中沉积物内复杂多相渗流机理尚不明晰.本文综述了平行毛细管模型、Kozeny模型等广泛应用于天然气水合物开发渗流分析的理论模型,对比分析了水合物开发多尺度渗流过程模拟方法,简述了国内外含水合物沉积物渗透率测试、渗流过程中沉积物物性演变以及水合物开采室内模拟等方面的渗流实验进展,总结了矿场尺度的天然气水合物储层开采过程中产气数值模拟手段,展望了多相渗流模型、储层原位含水合物样品室内测试及结构与物性演化、矿场尺度数值模拟与水平井压裂技术等应用研究的未来方向与挑战.   相似文献   
69.
This work describes a polymer reaction engineering framework for understanding how catalyst kinetic parameters affect the microstructure of polyolefins made with single‐ or multi‐site catalysts. Moreover, a methodology for deconvolution and kinetic parameters estimation is presented to estimate the reactivity ratios of multi‐site catalysts based on the combination of polymerization, fractionation, and spectroscopic techniques, namely, gel permeation chromatography‐IR and carbon‐13 nuclear magnetic resonance spectroscopy. The methodology capabilities are then demonstrated and validated using a case study simulated via a Monte Carlo model including random noise in order to better represent experimental result uncertainties. The methodology can reverse engineer experimental results and estimate all relevant reaction performance parameters.  相似文献   
70.
Plant research interest has increased all over the world, and a large body of evidence has been collected to show the huge potential of medicinal plants in various disease treatments. Medicago sativa L., known as alfalfa, is a rich source of biologically active components and secondary metabolites and was frequently used from the ancient times both as fodder crop and as a traditional medicine in the treatment of various diseases. Cyclitols, naturally occurring in this plant, have a particular interest for us due to their significant anti‐diabetic, antioxidant, anti‐inflammatory, and anti‐cancer properties. In the present study we revealed the isolation, the identification, and the quantification of some cyclitols and sugars extracted from different morphological parts of alfalfa plant. Soxhlet extraction and solid phase extraction were used as extraction and purification methods, while for the analyses derivatization followed by gas chromatography with mass spectrometry was involved. The obtained results showed significant differences in the quantities of cyclitols and sugars found in the investigated morphological parts, ranging between 0.02 and 13.86 mg/g of plant in case of cyclitols, and in the range of 0.09 and 40.09 mg/g of plant for sugars. However, roots have the richest part of cyclitols and sugars in contrast to the leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号